W3School TIY Editor
W3School 在线教程
改变方向
暗黑模式
# 这三行代码使编译器支持绘图功能: import sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.ensemble import BaggingClassifier from sklearn.tree import plot_tree # 加载葡萄酒数据集: data = datasets.load_wine() # 准备特征数据和标签: X = data.data y = data.target # 划分训练集和测试集(25% 作为测试集): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=22 ) # 创建带 OOB 评估的 Bagging 分类器: oob_model = BaggingClassifier( n_estimators=12, oob_score=True, random_state=22 ) # 训练模型: oob_model.fit(X_train, y_train) # 创建另一个相同的分类器用于可视化: clf = BaggingClassifier( n_estimators=12, oob_score=True, random_state=22 ) clf.fit(X_train, y_train) # 设置大尺寸画布: plt.figure(figsize=(30, 20)) # 绘制第一个基学习器的决策树: plot_tree(clf.estimators_[0]) # 这两行代码使编译器能够输出图形: plt.savefig(sys.stdout.buffer) sys.stdout.flush()