Traceback (most recent call last):
File "D:\site\python313\Lib\site-packages\pandas\core\groupby\groupby.py", line 1942, in _agg_py_fallback
res_values = self._grouper.agg_series(ser, alt, preserve_dtype=True)
File "D:\site\python313\Lib\site-packages\pandas\core\groupby\ops.py", line 864, in agg_series
result = self._aggregate_series_pure_python(obj, func)
File "D:\site\python313\Lib\site-packages\pandas\core\groupby\ops.py", line 885, in _aggregate_series_pure_python
res = func(group)
File "D:\site\python313\Lib\site-packages\pandas\core\groupby\groupby.py", line 2454, in <lambda>
alt=lambda x: Series(x, copy=False).mean(numeric_only=numeric_only),
~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\site\python313\Lib\site-packages\pandas\core\series.py", line 6549, in mean
return NDFrame.mean(self, axis, skipna, numeric_only, **kwargs)
~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\site\python313\Lib\site-packages\pandas\core\generic.py", line 12420, in mean
return self._stat_function(
~~~~~~~~~~~~~~~~~~~^
"mean", nanops.nanmean, axis, skipna, numeric_only, **kwargs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)
^
File "D:\site\python313\Lib\site-packages\pandas\core\generic.py", line 12377, in _stat_function
return self._reduce(
~~~~~~~~~~~~^
func, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)
^
File "D:\site\python313\Lib\site-packages\pandas\core\series.py", line 6457, in _reduce
return op(delegate, skipna=skipna, **kwds)
File "D:\site\python313\Lib\site-packages\pandas\core\nanops.py", line 147, in f
result = alt(values, axis=axis, skipna=skipna, **kwds)
File "D:\site\python313\Lib\site-packages\pandas\core\nanops.py", line 404, in new_func
result = func(values, axis=axis, skipna=skipna, mask=mask, **kwargs)
File "D:\site\python313\Lib\site-packages\pandas\core\nanops.py", line 720, in nanmean
the_sum = _ensure_numeric(the_sum)
File "D:\site\python313\Lib\site-packages\pandas\core\nanops.py", line 1701, in _ensure_numeric
raise TypeError(f"Could not convert string '{x}' to numeric")
TypeError: Could not convert string 'FiestaFocusMondeoB-Max' to numeric
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "example.py", line 11, in <module>
print(df.groupby(["car"]).mean())
~~~~~~~~~~~~~~~~~~~~~~~~^^
File "D:\site\python313\Lib\site-packages\pandas\core\groupby\groupby.py", line 2452, in mean
result = self._cython_agg_general(
"mean",
alt=lambda x: Series(x, copy=False).mean(numeric_only=numeric_only),
numeric_only=numeric_only,
)
File "D:\site\python313\Lib\site-packages\pandas\core\groupby\groupby.py", line 1998, in _cython_agg_general
new_mgr = data.grouped_reduce(array_func)
File "D:\site\python313\Lib\site-packages\pandas\core\internals\managers.py", line 1469, in grouped_reduce
applied = sb.apply(func)
File "D:\site\python313\Lib\site-packages\pandas\core\internals\blocks.py", line 393, in apply
result = func(self.values, **kwargs)
File "D:\site\python313\Lib\site-packages\pandas\core\groupby\groupby.py", line 1995, in array_func
result = self._agg_py_fallback(how, values, ndim=data.ndim, alt=alt)
File "D:\site\python313\Lib\site-packages\pandas\core\groupby\groupby.py", line 1946, in _agg_py_fallback
raise type(err)(msg) from err
TypeError: agg function failed [how->mean,dtype->object]